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It is rigorously proved that the analog of the free energy for the bond and 
site percolation problem on Z ~ in arbitrary dimension v (~ > 1) has a 
singularity at zero external field as soon as percolation appears, whereas it 
is analytic for small concentrations. For large concentrations at least, it 
remains, however, infinitely differentiable and Borel-summable. Results on 
the asymptotic behavior of the cluster size distribution and its moments, 
and on the average surface-to-size ratio, are also obtained. Analogous 
results hold for the cluster generating function of any equilibrium state of a 
lattice model, including, for example, the Ising model, but infinite-range 
and n-body interactions are also allowed. 

KEY W O R D S  : Percolation; essential singularity; Ising model; cluster size 
distribution; central limit theorem. 

1. I N T R O D U C T I O N  

Since being introduced by Broadbent  and Hammers ley  (1) in 1957, the concept  
of  percolation has received increased interest among  physicists. The main 
reason is probably that  it provides a well-defined, but  nevertheless transparent  
and intuitively satisfying, geometrical model  for spatially r andom phenomena.  
On the theoretical side, the problem is very interesting since it leads to the 
study of  nonlocal  observables, whereas statistical mechanics is usually con- 
cerned only with local observables. On the other hand, the existence of  a 
percolation threshold and the resulting singular behavior of  various observ- 
ables bear a striking similarity with ordinary critical phenomena.  This 
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analogy has stimulated and guided a large body of the research on this 
problem. 

The connection with second-order phase transitions has been particularly 
elucidated, following the work of Fortuin and KasteleynJ 2~ It resulted from 
their work that a quantity f~(h), an analog of the free energy of one phase, 
could be defined. It depends on the concentration p and on a parameter h, 
playing the role of the external magnetic field in ordinary phase transition 
problems~ The analytic behavior of this function with respect to h is connected 
to the behavior of the moments of the cluster size distribution ([C[ "} and of 
the probability size distribution function P, .  Our purpose here is to study 
such analyticity properties. 

Finally, it is also interesting to study the phenomenon of percolation for 
systems of interacting particles, such as the Ising model, (3'4~ or more generally 
for an equilibrium state of statistical mechanics. In that case, for any state tz 
we can study the cluster generating function f , (h ) ,  where h is an additional 
parameter. Analytic properties off ,(h) also allow us to describe in that case 
the behavior of clusters in the equilibrium state. Our results will extend also 
to this interacting problem, for the equilibrium state obtained with any type 
of statistical mechanical potential, of finite or infinite range, two-body or 
n-body. This extension involves some additional techniques, and results will 
be paralleled in each section for the noninteracting (usual) and interacting 
percolation problems. 

The paper is organized as follows: 

Section 2: The problems are defined, notations stated, and preliminary 
results established. 

Section 3: For small concentrations, f ( h )  is shown to be analytic at 
h = 0, ([C[ ~) to behave as K~n!,  and P~ to decay exponentially with n. 

Section 4: As soon as percolation appears, f ( h )  is proved to be singular 
at h = 0, (IC[ ~) is larger than K'~[m,/(v - 1)]!, P,  does not decay exponen- 
tially, and t im,~|  -~ (1 - p)/p.  

Section 5: For large concentrations, f ( h )  is proved, moreover, to be 
infinitely differentiable and Borel-summable at h = 0, the (I C I ") behave as 
Kn[nv/(v - 1)]! and the P~ as exp(-  an ( ' -  1>/,). 

Section 6: These rigorous results find an intuitive basis in a central limit 
theorem. 

We would like to emphasize the fact that results of Section 4 represent a 
rigorous proof for the free energy of the percolation problem or the cluster 
generating function of an equilibrium state of the analog of Andreev and 
Fisher's (s~ conjecture of the existence of an essential singularity in the free 
energy of the Ising model at h = 0 below the critical temperature. In this 
connection, we recall (2~ that fp(h) for the percolation problem is the limit of 
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the free energy of the random cluster model as the parameter tends to one, a 
model which is identical to the Ising model when the parameter is equal to two. 

The proof of our result is by itself of interest, as will be seen in Section 4, 
because it makes apparent that the clusters in the percolation region have an 
effective volume, and this phenomenon makes the singularity to appear. 

Some of our results have been previously reported in a letter. (6~ 

2. D E F I N I T I O N S  A N D  P R E L I M I N A R I E S  

In percolation theory, one considers usually two kinds of  processes, the 
so-called bond percolation and site percolation processes. Although bond 
percolation is a special case of site percolation, the transformation of one 
problem into the other involves a change of lattice. For convenience, therefore, 
we will keep the distinction here. 

These processes are usually defined on an infinite lattice (or graph) G, 
composed of a countable set of vertices V(G) and edges E(G). Here, for 
convenience, these lattices will be supposed to be regular, i.e., each vertex will 
have the same finite valence (also called coordination number) and assumed 
to be translation invariant. These restrictions are not, however, strictly 
necessary. 

In the site problem, a configuration is defined as a subset V' c V(G) of 
the vertices (or sites) that are considered as occupied, the remaining ones 
V(G)\V' being considered as vacant. A probability distribution on this 
configuration space is given and determined as usual by the set of probability 
of local events {/xA(X)}, where/xa(X) is the probability that in the finite sub- 
graph A all the vertices of the set X are occupied, whereas those of the 
complement V(A)\Xare vacant. In the usual percolation problem, the vertices 
are chosen to be occupied or vacant independently of each other with prob- 
ability p and q = 1 - p. Hence 

IzA(X) = plXjqlV~A>~xl (1) 

where X denotes the number of points of the set X. 
It is quite possible, however, and it is necessary for the study of the 

clusters of, say, the Ising model, to consider the more general case where the 
occupied sites interact and the probability distribution ~A(X) is an equilibrium 
state of a lattice model at a given temperature and chemical potential. This 
more general situation has been discussed recently in the case of the Ising 
model. (3,4~ It is often believed that such a study can only be achieved if the 
graph defining the connectivity and the graph of the nonzero interactions are 
the same. This idea follows from the a priori that different clusters should be 
noninteracting. As a matter of fact, we mention that such a restriction is not 
necessary and in our work the potential is completely independent of the 
graph that determines the connectivity. This will allow us to treat measures 
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of probability that are equilibrium states of systems with infinite-range or 
many-body interactions, and not only those of finite range. In all these cases, 
the study of percolative processes for such distribution measures leads to 
interesting results concerning the typical configurations, behavior of the 
cluster distribution, nucleation, and so on. 

As in statistical mechanics, one introduces local observables, which are 
defined as functions on the configuration space, such thatf(V')  = f (V '  n V(A)) 
for some finite subgraph A and SUpv,[f(V')] < ~ .  The expectation value of 
such an observable is given by 

<f> = ~ f(X)tLA(X) (2) 
X = A  

In percolation, however, contrary to usual statistical mechanics, one is 
not interested in local observables (whose expectation values are trivial in the 
noninteracting case), but in a special class of nonlocal observables, the cluster 
observables. They are introduced in the following way: In a given configura- 
tion, the subset V' = V(G) consisting of all the occupied vertices defines a 
section graph G' = (V', E'), where E'  consists of all edges of E with both 
vertices in V'. Each connected component of G' defines a maximal connected 
set of occupied sites. A simple cluster observable is the characteristic function 
7x s (or 7x =) of the event: "The finite set of vertices X belongs to the same 
finite (or infinite) cluster." (We recall that the characteristic function of some 
event is the function over the configuration that takes the value one if the 
configuration satisfies the event and the value zero otherwise.) General cluster 
observables are obtained by taking linear combinations and products of the 
simple cluster observables. These observables can be obtained as limits of 
local observables for regular lattices at least. C2) This allows us, in principle, to 
compute their expectation value. 

The bond percolation problem is defined in the same way, but this time a 
configuration is given by the subset E' = E(G) of the edges of the lattice that 
is considered to be occupied, the remaining one E(G)\E' being vacant. In the 
independent case, the probability distribution is given by tLA (E') = p lE'lql~(A)\E'J, 
where p and q = 1 - p  are the probabilities that an edge is occupied or 
vacant. Then clusters and cluster observables can be defined in a similar way 
as in the site problem. 

In this paper, we will mainly study the analog of thermodynamic 
quantities for the percolation problem, namely the cluster generating function, 
and its various derivatives. If P.  is the cluster size distribution function, which 
means that P,  is the probability that a given point belongs to a cluster of 
exactly n vertices, then the cluster generating function is defined by 

f(h) = n P"e-h'~ (3) 
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p This series is always convergent when h t> 0, because ~,=1 ~ ~< 1. The 
parameter h is called the external field. 

The analogy between this quantity and the free energy of one phase in 
ordinary lattice models of ferromagnetism was first put on a firm basis by 
Fortuin and Kasteleyn ~2~ (see also Ref. 7). They proved thatf(h), for the usual 
bond model, could be obtained as the limit of the free energy of the ferro- 
magnetic Potts model with k components, when k tends to 1, the magnetic 
field staying positive. The parameter h of the percolation problem is then 
identified as the magnetic field of the Potts model, whereas p = 1 - e -~J, 
where J is the coupling constant. This correspondence can be extended to the 
site percolation model/8~ In the interacting case, however, h should be clearly 
distinguished from the magnetic field, and f(h), which we will denote in this 
case byf,(h) (by reference to the equilibrium state/~) can only be considered 
as the cluster generating function. 

Knowing the cluster generating function, one can compute various 
quantities, namely the cluster size distribution function P~, which is of 
central interest in percolation, and its moments. 

First of all, in the variable z = e :~, we have 

= ( k  - 1)!  P~ (4)  f ( z )  o 
Z =  

On the other hand, we have, at least formally, up to now, when k > 2, 

d k 
( -1)k"~ "if(h) h=o = <nZ-l> (5) 

In particular, f(O) is the mean number of clusters per site, and 

-f~l)(0) = P~ = p, - P~ (6) 

where P~ is the percolation probability, i.e., the probability that the origin 
belongs to an infinite cluster, Pt is the probability that it belongs to a finite 
one, and p, is the probability that the origin is occupied; p, reduces to p in 
the noninteracting case. The second derivative ff2~(0) is the average size of 
finite clusters, and the following derivatives are the further moments of the P, .  

We are now in a position to state the following preliminary results: 

1. The function f(h) is analytic for Re h > 0 and the series f(z) is 
absolutely convergent for [z[ ~< 1. 

This follows immediately from the fact that ~ ,  ~ ~ P,  ~< 1. 

2. The analyticity off(h) at h = 0 is equivalent to the convergence (and 
analyticity) off(z) in a circle of radius larger than 1, to the exponential decay 
of the P,  with n, and to a bound of the form Kkk! for the moments <]C[~>. 
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In particular, if the series (3) is divergent for any h < 0, then f(h) is singular 
a t h  = 0. 

This follows from the positivity of the coefficients of the series (3): It 
implies that the first singularity off (z)  appears for z real, positive. Analyticity 
in h at h = 0 implies, then, analyticity o f f (z )  for Izl < Zo, Zo > 1. It implies 
in turn that P~ decays exponentially with n, and that the moments are finite 
and bounded by Kkk!. The converse also holds, as can be easily seen. 

In conclusion, the interesting question is that of the possible analyticity 
or singularity at h = 0, which is related to the behavior of ([CI ~) and to the 
exponential decay of the P , .  By analogy with magnetic systems, we might 
expect that in the percolation problems, f(h) is analytic at h = 0 outside the 
percolative region, whereas inside the percolative region various conjectures 
are possible, one based on mean-field-type arguments, from whichf(h) should 
stay analytic at h = 0, the other based on an analog of Andreev and Fisher's 
conjecture <5> for the liquid-gas transition, arguing for a singularity. The latter 
picture will be proved to be correct. 

3, A N A L Y T I C I T Y  FOR L O W  C O N C E N T R A T I O N  

Let us first consider the usual percolation problem. We will show that 
for p < P0 < Pc, Pc denoting the percolation threshold over which percolation 
appears, the functionfp(h) is analytic at h = O. This result was already known 
by Lieb (9~ from arguments on analytic functions of several variables. We give 
here a direct proof. 

In the independent case, f(h), denoted fp(h), can be written explicitly as 

f(h) = ~. e-nt~ plCiqreCl = ~ e-htCtplClqtOCl (7) 
I c l  cl 

where the sum runs over all the finite clusters C containing the origin in the 
first expression, and over all possible shapes of finite clusters in the second 
one. [C I denotes the size of the cluster and ]~C t the size of its boundary, i.e., 
the number of points of V(G)tC that are neighbors to some point of C in the 
site case, and the number of edges of E(G)IC that have at least one vertex 
in common with C in the bond case. 

It is known (see, for example, Ref. 10) that the number of clusters of size 
n is less than K ~, where K is some constant depending on the lattice. Hence- 
forth 

P~ ~< p~/~ (8) 

and fp(h) is analytic in the region Re h >/ - log pK and hence at h = 0 for 
p < K  -1. 



Essential Singularity in Percolation Problems 83 

On the other hand, it is easy to see, by restricting the sum (7), for example, 
to the chains, that for any p 

p,~ >! p,~q(~- 2>~ + 2 (9) 

where z is the coordination number of the lattice, and so P ,  behaves exponen- 
tially with n at small concentration. 

We want now to indicate a simple method to obtain a better range of 
concentrations for which fv(h) is analytic at h = 0. A related one has been 
worked out by Schwartz. (11~ 

Let us denote by a(n, b) the number of clusters of size n and boundary 
size b. Then 

P~(p) = p'~ ~ a(n, b)q b (10) 
b 

and 

d log(P./p '~) ~b ba(n, b)q b 
d log q ~b a(n, b)q b 

If we consider the site problem, we have, moreover, 

Then 

(11) 

dl~ <~ n(z - 2) + 2 (13) 
d log q 

integrating this inequality and using that log P.  ~< 0, we obtain for p < p '  

log P.(p) <~ [(z - 2)n + 2] log(q/q') + n log(pip') (14) 

Choosing p'  = 1/(z - 1), q' = t - p '  = (z - 2)/(z - 1), which maximizes 
p,(q,)Z-2, we get 

z-i n [ z -  I ~ [ ( z -  1) . . . .  =] (15) 
P'~(P) ~ ~ -  2 q} [(z 2) ~-~/~q J 

from which analyticity at h = 0 follows fo rp  < 1/(z - 1). Note that 1/(z - 1) 
is the critical probability for percolation on the Bethe lattice. 

On the other hand, (9) ensures that 

P.(p) >i q~[pq~-2]. ~ a(n, b) >1 q2[pq~-2],~ (16) 
O 

Finally, in the bond problem, the same method applies, the basic 
inequality (12) becoming 

b <~ n ( z  - 2) + z 0 7 )  

b <<. n ( z -  2) + 2 (12) 
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We can then state: 

T h e o r e m  1. For the site and bond percolation problems with coordina- 
tion number z, the free energy satisfies the following properties: 

(i) f~(h) is analytic at h = 0 for p < 1/(z - 1). 
(ii) P~ decreases exponentially with n for p < 1/(z - 1) and, more 

precisely, if ~ = 2 or z for the site or bond problem respectively, 

( z -  1 - ' ~ [ ( z -  l ) ~ - l z - - - Z - - 2  q] [(z In q,~[pq~-2],~ <~ p .  <~ 2)~_2pq~-~ (18) 

(iii) <[CIn> satisfies the following inequalities: 

A1K~n! <~ ([CI"> ~< A2K2'~n! 

with A~, Kz, A2, and/<2 obtained from (18). 

Let us now turn our attention to the percolation problem in the inter- 
acting case. For simplicity we will not bother here with the size of the domain 
of analyticity. We will use the lattice gas interpretation. The probability P(C) 
of having some cluster C is, by definition, the probability P(C occupied and 
~C empty). But 

P(C occupied and eC empty) ~< P(C occupied) = p(C) (19) 

where p(C) is the correlation function for the set C. Furthermore, it is known 
[see, for example, Ref. (12)] that for small concentration p, one has 

p(C) < A(p) Icl (20) 

and A(p) tends to zero as p tends to zero. 
Hence, the number of clusters of size n being bounded by K% Pn is less 

than [KA(p)]" and f ,(h) is analytic at h = 0 for p small enough. 
This result depends only on the bound (20) and is then independent of 

the range of the interaction or the presence of many-body potentials in the 
interaction, as long as 

l * ( X ) l  < oo 
X = V(G) 
Xg{O} 

We can then state: 

Theorem 2. For the interacting percolation problem, the cluster 
generating function fu(h) is analytic in h at h = 0 and Pn(ff) decays exponen- 
tially when the concentration p is small enough: p < po. 
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4. S I N G U L A R I T Y  IN THE P E R C O L A T I V E  R E G I O N  

The situation when there is percolation appears to be much more 
interesting. As stated, we will prove that there is a singularity offp(h) orf , (h)  
whenever there is percolation. The proof  will use a new description o f f (h )  
and its moments as well as P~. It will allow us to understand their properties. 
In fact, the crucial and most interesting point will be the proof  that the 
clusters have an effective volume in the percolative region. 

We will associate to each cluster C a contour y, in the following way: 
First consider, for simplicity, the cubic lattices 2U (see Fig. 1). We imbedded 
our lattice in N~ in the trivial manner, and given any cluster, we draw around 
each vertex x of the cluster the 2v faces of the unit cube centered at x. We 
suppress, then, the faces that occur twice. The closed polyhedron obtained 
in this way is called U(C). Each face of I'(C) separates a point x of C and a 
point y of 77v\C. Along a (v - 2)-dimensional edge of U(C), either two or four 
faces meet. In the latter case we slightly deform the polyhedron, "chopping 
off"  the edge from the cubes containing a point of C. When this is done, U(C) 
splits into connected components yl ..... yr, which we call contours. Among 
all these contours there is one and only one that is outer; we will call it y, and 
so to each cluster we have associated a contour 9,. 

For more general lattices, like those used in solid-state physics (tri- 
angular, fcc), instead of a unit cube, we can take the Wigner-Seitz cell and 
then carry out the same construction. 

Let us now first investigate the noninteracting site problem. We introduce 
some useful notations (see Fig. 2): V(y) will denote the set of points of the 
lattice inside y, A9, the set of points of V(y) neighbors to some point of the 
outside of y, and 0(~,) is V(9,)IAg,; ~9, will be the set of points outside 9' neigh- 
bors to some point of V(9,). 

Then a cluster decomposes naturally into two parts: C = Ag, u E, where 
E is a set of vertices in 0(9,) that are all connected to the boundary of 0(9,) by 
a path of occupied sites in the site problem and of occupied bonds in the bond 

a u o o ,~ o o o o 

o x x ~ X x ~ x . x  x 

' y  x x x ~ o o 

o o o o o x x o o 

o ~ Q o 

~ 

~r x 

~ r  

x 

x -  ~ r  

~ r  ~r  

x 

Fig. 1. Association of a contour y to a cluster C on 7/2. The crosses represent the vertices 
of C. 
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problem, and E is such that the set of points of E and A 7 is connected. Note 
that E can be possibly empty, if A 7 is a connected set. 

We are now going to "separate"  the contribution of each cluster into a 
surface term and a volume term corresponding to the interior of  the cluster. 

By virtue of the positivity of the terms of the series in (7), we can 
rearrange the terms. Then 

fv(h) =~pl6'lqlerle-ht6'l ~ e-h'mpl~'q I~E~O('>I (21) 
7 1  E c 0 ( ~ ' )  

(E,Ay)c 

where the first sum runs over all possible shapes of contours, and the second 
one over all subsets E included in (9(7) such that all points of E and ofA 7 are 
connected, including possibly the empty set. Here and in all the following, one 
can replace the summation over 71 by a summation over all contours 
encircling the origin: 

1/IV(7) l  (22) 

Now the sum over E on the right-hand side of (21) can be reexpressed as 
(X~ exp( -  h Ay , ~x~o(~) Xx ))oct) that is, an average value over the configura- 
tions of 0(7). Here Xc(A7) denotes the characteristic function of the event 
" the  set formed by the points ofA 7 and the occupied points of  0(7) that are 
connected to A 7 is connected," and then restricts the average value to the 
configurations satisfying that condition; on the other hand, X~ y is the charac- 
teristic function of the event " x  is connected to AT," so ~o(v)X~ ~ gives for 
each configuration the number of points connected to the boundary. Hence 
we get 

fp(h) = ~P'~Y'qt~ ~o(~) ~ X~Yt2(/ y} (23) 
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As a matter of fact, when A 7 is by itself a connected set, xC(AT) = 1, and 
then, if ~ ,  denotes the summation over all contours such that A 7 is a con- 
nected set, we get 

fp(h) >~ ~, p'AY'ql~YJ[exp(-hlA7i)](exp(-h x~o(~)X~) ~(y ) (24) 

for h real and then we get by Jensen's inequality 

fp(h)>~ E pia~Jql~i[exp(--h[ATl)]exp(--h( ~o( x~'/~ ) (25) 
~'1" x r) I 0 0 ' ) 1  

Moreover, it is clear that (X~~ >t P~,  where P~ denotes the per- 
colation probability, and then if we restrict ourselves to h real, negative, 
h =- -E ,  wehave  

fp(h) >>- ~ playlqtOyl exp[E(IA7[ + 16)(7)1P~)] (26) 

Suppose now that there exists a sequence of contours y~ such that Ay is 
a connected set, and, moreover, 

lim 187,[ = 0% lim 187"1 187"1 T - ~  a, lim = 0 (27) 

then for any ~,f~(-E) will be infinite. This in turn would imply the singularity 
offp(h) at h = 0, as indicated in the second preliminary remark of Section 2. 

For the simple cubic lattice 2zv, it is not difficult to find such a sequence 
when v > I. They are just the cubes. For more complicated lattices, they can 
be found by inspection. For lattices that contain 77 v (for example, nearest 
neighbors plus next nearest neighbors) we can again take cubes for y , ,  as 
long as the coordination number of each site is finite. In some cases, in order 
to apply our arguments, it is useful to separate not only the contribution of 
the set A7, but also that of some other set of points. For example, in the 
hexagonal lattice, it is useful to consider, besides A 7, the set A' 7 of points 
inside V(7 ) that are second nearest neighbors to the outside of 7. Then by 
restricting the configurations to those such that A' 7 is completely occupied 
and choosing as a sequence of contours the regular hexagons, the proof  goes 
quite similarly as previously. Alternatively, this can be worked ou t  directly 
through the use of the Wigner-Seitz cell construction for 7 and then defining 
I AT[ as the set of points of V(7) contained in some cell intersecting 7. 

Note, however, that such a sequence does not exist in the case of a Bethe 
tree or expanded cactusses, which explains why fp(h) is analytic at h = 0 for 
P > Pc in these cases, (la) whereas we can prove here the nonanalyticity for 
realistic lattices. 
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Furthermore, we can say more about the singularity by looking at the 
derivatives off(h) at h = 0, i.e., up to a sign, the moments of the cluster size 
distribution <It(>. 

Applying the same ideas to them, and by virtue of the positivity of their 
representative series, we get 

<[Clt) = ~, p,~,q,O)', 
)'i 

But Eq. (28) can be rewritten as 

y 
E c O(~') 
(E,A)') c 

(Ay + [El)*p'~'q' a*~~ (28) 

However, the functions involved in the average value are certainly increasing 
over the configurations of 0(7). [We recall that a function f is said to be 
increasing over configurations if f (X) >i f (X ' )  whenever the set of occupied 
points in the configuration X contains the set of occupied points of the 
configuration X'.] In percolation, Harris' inequality ~1~ (see also Ref. 2) tells 
us that if f l  ..... f ,  are n increasing functions over configurations, then 

In our situation this implies that 

X J / o()') 

xEO(y) / / 0 ( 7 )  

and since (X~)o()'~ /> P=, 

<fCl'> /> ~ p~6)'lql~<x~(A~')>[lATI + P~]O0')I] t (31) 
}'1 

We can now look again at the contribution of the contour 7. introduced 
before, which leads to the lower bound 

<lCl > ~> KI* v_--=--T l ! 

As a matter of fact, this proof shows that over the percolation threshold, 
the clusters have an effective volume. The divergence follows from this fact 
and from the existence in realistic lattices of contours whose volume grows 
faster than the surface, in contrast to the Bethe-type lattices, for which 
clusters also have an effective volume, but in which, by geometric restrictions, 
this volume is of the order of the surface. 
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Let us now briefly come to the bond problem. The same methods will 
apply with minor differences. The only change follows from the fact that 
given a connected set of sites, there are possibly various clusters of bonds 
compatible with that cluster of sites. Hence, after choosing the set of sites of 
the cluster, one has to sum over bond configurations compatible with it. 
Precisely, one can express f~(h) as 

f ~ ( h ) = ~ ' q ' "  ~, p'me-n'm ~, e-nlB"p[B'lq 'ta'~(~ (32) 
~'1 B = .~(A r )  B" = ,~ (O (y ) )  

( A y , B ' )  c 

= Z q'"P '~'e-~'~' xc(AT)exp ' h  ~ X ]/~o(,) 
yi,B = . ~ ( A y )  b~!J(O(y)) 

where b/[ denotes the surface of the contour ~,, that is, the number of bonds 
joining one point of Ay with one point of ~,;  the sum over B runs over all 
bond configurations among the set ~(A?,) of bonds between points of AT; the 
sum over B' runs over all bond configurations among the set ~(@(y)) of 
bonds between points of 0(y) such that the points of Ay and the bonds B' are 
connected; and X~ ~ denotes the characteristic function of the event " the  bond 
b is connected to the boundary of 0(7)." 

The moments can be expressed also in the following formula: 

( ( )) (1CI~} = ~, q,,lp,B, X~(AT) ]B[ + Z g~ y (34) 
yz,B =.~'(A ~,) be| 09 

Then the proofs go as in the site problem. 
We can now state the results: 

v >  

Theorem 3. For the (noninteracting) site and bond problems on 7/v, 
1, the following results hold for p > Pc: 

(i) The free energy fp(h) is singular at h -- 0 and the P~ do not decay 
exponentially. 

(ii) The moments of the cluster size distribution satisfy for p > Pc 

Analogous results hold also for the other realistic lattices as discussed in 
the text. 

A consequence of these results will be made explicit later in a corollary; 
however, we first make two remarks: 

Remark 1. If the P~ behave as exp ( -  ant), our result on the behavior of 
(IC] ~} implies that f o r p  > Pc one has P~ > exp(-an(~-l)/v). This result was 
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proposed by Stauffer '15~ in the two-dimensional case and Flamang (~6~ in the 
three-dimensional case, on the basis of an analysis of numerical studies. We 
will see in Section 5 that for large concentrations we can prove that the P.  in 
fact decay exactly like exp ( -  ~n (~- ~J~). that is, we can prove upper and lower 
bounds of this type for the P~. 

Remark 2. We have proved that fp(h) is singular at h = 0 whenever 
there is percolation, that is, f o rp  > Pc. It is not hard to see that f~(h) is also 
singular at h = 0 when p = Pc. In fact, supposefp~(h) to be analytic at h = 0, 
which implies (from the preliminaries in Section 2) that for some positive e 
one should have 

n>~i  

But on the other hand, for any complex p' we certainly have 

'P~ (P ' ) I -  / o  P"c'(1- P')'~c~ I 

c~o}  Pc / 
',CI = n  

p' pc~l~cl[ 

T  2-:I I 

l O l = n  

1 P.(po) (35) 

This last expression is less than e~"/2P.(pc) if IP' -P ~ t  < c~, for some 
sufficiently small. Hence for [ p ' - P c [  < ~ the series ~.P.(p') would be 
absolutely convergent and would define an analytic function; this is impos- 
sible since for p'  real, ~ .  P.(p') is equal to p'  for p' less than Pc and equal to 
p' - P~(p') for p'  larger than Pc. 

An interesting consequence of Theorem 3 concerns the limiting value of 
the surface-to-size ratio for clusters of size n, namely (b)./n, where (b ) .  is 
the average boundary size for clusters of size n. Such a result was proposed at 
Pc by Stauffer (17~ from a scaling hypothesis and obtained at Pc by Reich and 
Leath (17) in an approximation of P~ through an integral and the use of 
steepest descent method. On the other hand, a derivation was given for 
P > Pc by Stauffer (18> using our Theorem 3, but with the implicit assumptions 
that lima(I/n)log P.  exists and that limits over n and derivations can be 
commuted. We give here rigorous results on the limit of (b)./n: 
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C o r o l l a r y .  For p > po one has 

]im <b}~ _ 1 - p  
n~o~ n p 

where (b)n is the average boundary size for clusters of  n sites. At Pc one has 

l iminf  <b}~ >~ 1 - P_____ c 
n Pc 

In order to prove this corollary, let us first prove the following lemma: 

L e m m a .  For any p, one has: 

( i )  P n  + m/(  tI Jr m) >1 (P,/n)(P,Jm). 
(ii) g,  = (l/n) log P,Jn has a limit when n goes to infinity. 

For ease of description, we restrict ourselves here to y2, but the proof  
applies to any lattice. Let us consider two clusters C (1) and C (2~ of respective 
size nt and n2; among the points of C (1~ that are farther to the right, we call 
x(C (~) the highest one, and analogously, among the points of  C (2) that are 
farther to the left, we denote by y(C (2~) the lowest one. 

We now translate C (2~ on the lattice in order that y(C (2~) becomes the 
nearest neighbor to x(C (1~) on the right of  x(C(1)). By virtue of  the con- 
struction, the points of C (1~ and C (2~ do not overlap and we can identify the 
figure obtained with a cluster C of size nl + n2. Moreover, the probability 
P(C) of this cluster satisfies 

P(C) = P(C'I')P(C(2))/q a (36) 

where a is the number of points of the boundary of C (1) and C (2~ that overlap 
after the translation. Hence 

P(C) >1 P(C(I))P(C (2~) (37) 

Now from another pair of clusters C '(1~ and C '(2~ of respective size nz and 
nz, we obtain by our construction a cluster C '  with a different shape than C 
as soon as C '(~ is different from C (1~ or C '(2~ different from C (2~. We see 
that in this way we have realized an injection from {C}, 1 x {C}~ 2 into 
{C}~1 +~2, where {C}, denotes the set of the different shapes of clusters of size 
n. Hence, using (37), we get 

2 e(c) 2 n2 P,~1+~2 =- >t P(C) 
n I Jr c~ c~(o} H1 Jr / ' /2 

ICl = n l  + n2 ICi = ni + n2 

>1 7 P(C (1)) 7 P(C (2)) - P"~ P,~2 (38) 
(i) ~ ~ I11 /12 c I ,iC( )I =nl C[2),10( )I = n2 
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where, as previously, summations indexed by a subscript 1 run over the 
possible shapes of clusters for a given size. This concludes part (i) of the lemma 

Inequality (38) can be rewritten as 

(nl + n2)g.~+.2 >1 nlg.1 + n2g.2 (39) 

So the functions ng. of n are upper-additive and the g. are bounded above 
and below (P. < 1 so g. ~ 0 and P.  >/ e -a" so g. >/ -~) .  This in turn 
implies (e.g., Ref. 12, Chapter 7) that the g~ have a limit as n goes to infinity. 
This concludes part (ii) of the lemma. 

We turn now to the proof of the corollary. It follows from Theorem 3 
that for p > Pc, lira sup~g, = 0 and hence by the lemma, lim~g~ = 0. 
Thence 

1_ 
= - log p (40) lira log 

n /~/ p-  

On the other hand, formula (I 1) yields 

1 logP___, ___ (b),~ (41) 
d log q n p~ n 

Furthermore, the functions (l/n) log(P./p '~) are convex with respect to log q, 
as can be seen by computing the second derivative, which can be reexpressed as 

) ' d 2 1 log = n ((b - (b) . )2) .  (42) 
(d log q)2 n 

The functions (l/n) log(P,~/p") are then convex and differentiable in the 
variable log q, they have a limit when n goes to infinity, and this limit, - l o g p ,  
is differentiable. Hence by Griffith's lemma their derivatives have a limit and 
this limit is the derivative of the limit: 

lim ~b)~ d 1 - p (43) 
~ n d l o g q  ( - l ~  = P 

The inequality at Pc is obtained in a similar way, using Remark 2 after 
Theorem 3. However, the equality, if true at Pc, would need some more 
results. In Ref. 18, scaling assumptions were used. 

We want now to discuss the question of the analytic behavior of the 
cluster generating function in the percolative region in the case of the inter- 
acting percolation problem. For simplicity we will restrict our attention to the 
interacting site problem over Z v, and the results can be extended as previously 
to the other realistic lattices; in particular, in the case of finite-range inter- 
actions, one can choose the graph of nonzero interactions as the graph 
defining the connectivity. 
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Our probability measure will be the equilibrium measure of some 
statistical mechanical system, corresponding to some boundary conditions, 
to some chemical potential ~, and to some translation-invariant interaction 
potential q~, such that 

~. ]qb(X)] = D < 
Xc~V 
X~{0} 

The temperature is included in the definition of the potential. 
Now the probability of occurrence of some finite cluster P(C) can be 

expressed as 

P(C) = P(v)P(C Iv) (44) 

where P(V) is the probability that A v is occupied and ~V empty, and P(. IV) 
is the conditional probability with respect to the event V. 

Hence, following ideas similar to previous ones, we can write 

f,(h) = ~ e-htAr'P(v) ~, P(C[v)e -h(tc'-''~:'') (45) 
71 C compat ib le  

with 7 

= ~ e-hJa"'P(v ) ~, P(E, ~E n O(V)lV)e -~'~' (46) 
71 E ~ 0(7) 

( E , A T )  c 

where P(X, Y) denotes the probability that X is occupied and Y empty. Now 

f~(h)=~P(7)[exp(-h[ATl)](Xc(AT)exp[-h(x~o(y)X~)l)~ (47) 

with ( )[~ standing for an expectation value with the probability P(. [y), and 
Xc(AV) is the characteristic function of the event, "The set of the points of A v 
and of the occupied points in 0(v) connected to A v is a connected set." 
So we get 

f~(h) = ~ [exp(-hlAv,)]~Xc(AV)X(AV,-~) e x p ( - h  x~o(, ) Xax ')  ) (48) 

where x(Av, 0V) is the characteristic function of the event, "A v is occupied 
and 0V empty." 

Now, we will prove that 

/> (X~(AV)exp(-h  x~o(~)X~ y) ) exp[-a([AV[ + ]0V[)] (49) 

where a is some constant. Then the divergence will follow as previously by 
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choosing appropriate contours and from Jensen's inequality, since the prob- 
ability for some point x in 0(~,) to be connected to infinity is certainly less 
than the probability for x to be connected to A~,, and so <x~ 7> >/ P~o. 

In order to prove (49), for a given ~, we choose a box A, including ~, and 
then we will go to the thermodynamic limit. We forget for simplicity the 
possible boundary conditions; they can be handled similarly. 

The function xc(AT) exp(--h A~ ~x~o(y) Xx ) depends only on the configura- 
tions inside 0(~) and will be denoted for simplicity by g. 

Now we have, by definition of the measure, that 

- -  1 
<gx(AT, ~y)>A = Z--~ ~ g(X) exp[- t , ( lX!  + A~,) - f ( X  w A~,)] 

X = A\(A~'uOy) 

where U(Y) is the energy of the set of points Y, and so 

u(Y) = 
y ' c y  
}Y'I>~2 

Now let us introduce W(X I Y) as 

w ( x l Y ) =  r 
T = X u Y  

T C X  

where the sum runs over all subsets of the whole set of points, which contains 
at least one point of Y. Note that 

IW(X[Y)I <~ ~. ~ Ir ~< IYlO (50) 
y~Y Tc(XuY) 

T~y 

So we can rewrite <gx(A~,, 8y>A as 

- -  I 

X cA\(Ayu@~) 

On the other hand, we can write <g>A as 

1 <g>* = 2-A ~ e-"'x'-v(X)g(X) ~ e-"'vt-w(x'Y' 
X cAk(A~,uOy) y c (A~,~)Oy) 

It follows from these expressions, together, in particular, with (50), that 

(gx(AT, 87))A t> e -"l~rl -D(21zxrl + 10~l)2-(larl + I~t)<g)A (51) 

which gives (49) and so concludes the proof  of the singularity of fu(h) at 
h = 0 .  

In the case of an equilibrium measure satisfying the F K G  inequality, 
that is, for ferromagnetic systems/~9) we can say something more precise on 
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the moments of the cluster size distribution; as a matter of fact, we can 
rewrite them as 

(ICl~> = ~. e(~,) ~ (zx~, + E)'P(E, aN n 0(~,)1~) (52) 
Yl E = | 

(E,AT) c 

But, through (51), we have 

( ( )) ( [Cl ' )  1> ~ e-'~cf~Tl+~~ X~(A~ ') IA~'I + ~ x~' (54) 
Yl x ~ e ( y )  

Now the functions x~(A~,) and X~ (7~ are certainly increasing over the 
configurations; therefore the FKG inequality (which generalizes the Harris 
inequality to the case of ferromagnetic systems) tells us that 

(( ))' (ICl ')/> ~ e-~(IATl+10'l>(X~(A~')) IATI + ~' (55) rl x 7) Xx 

From (55), together with (X~D >i P~,  it follows now as in the noninteracting 
case that 

We can then state: 

<lCIZ) ~ gz (  v ) V-2--I l ~ (56) 

T h e o r e m  4. For any lattice gas over 2~ ~, v > 1, such that 

X~{O} 
X=Zv  

the following results hold in the percolative region: 

(i) The cluster generating function f . ( h )  is singular at h = 0, and the 
P .  do not decay exponentially. 

(ii) If, moreover, the system satisfies the FKG inequality, then 

These results generalize to realistic lattices different from 2~' as indicated. 

As in the noninteracting case, our results on the moments (]Cl ~) imply 
that if P~ behaves as exp(-cm~), then P ,  > exp(-f in (~- l~j~). Arguments and 
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numerical computations were given by Binder for such a behavior in the case 
of the clusters of the Ising model at low temperature. (2~ 

R e m a r k s  a n d  D i s c u s s i o n  

l. Our results have some interesting consequences for the usual ferro- 
magnetic Ising model, with nearest neighbor interactions, in zero external 
field. Consider the positively magnetized equilibrium state obtained by taking 
positive boundary conditions. One knows (~ that in two dimensions, the plus 
spins percolate, whereas the minus do not in this state, when T < To. In 
three dimensions, the situation is expected to be the same at low temperatures. 
Our results imply that P~(+), the cluster distribution function for the clusters 
of plus spins, do not decay exponentially. On the other hand, (~ the prob- 
ability of having a finite cluster of plus spins is less than the probability of the 
same cluster of minus spins; so P~(+) 4 P~(-) and the Pn(-) also do not 
decay exponentially. 

2. Furthermore, if we impose a positive magnetic field H, the situation 
will be the same: The plus spins will percolate and the minus will not percolate 
for T < Tc in two dimensions, and at low temperature in three dimensions. 
This follows from the monotonicity of P~ as a function of H. (21~ Hence, in 
such a state, the probability for the spin at the origin to be minus is 

P~(a o = - 1 )  = ~ P~(Cr) 
Cf~{0} 

where Pn(Ct) is the probability of having a finite cluster Cr of minus spins. 
If we approximate P/tiCs) by [exp(-H I GD]P~=0(G), which is an 

approximation similar to that of Andreev, (5~ we get 

en(% = - 1 )  = ~ [exp(--HlCIl)]PH=o(Cr) 
cf~(0} 

which is the generating function for clusters of minus spins in the positively 
magnetized phase. Theorem 4 and the preceding remark prove that, in this 
approximation, the magnetization is singular at H = 0, at sufficiently low 
temperature. However, it remains to see if going beyond this approximation 
does not make the singularity disappear. 

3. Surprisingly, in the interacting case, at low temperature, one can easily 
find a reasonable approximation to Pn= o(Ci) which reproduces the singular 
behavior, but not in the noninteracting case. Indeed, P~=o(Cr) can be 
approximated reasonably well by exp[-2Jl(Cr)], where l(Cr) is the number 
of bonds between the points of the cluster and the outside, since this is the 
first term in a low-temperature expansion of Pn = 0(Cr). And if we restrict the 
summation to the most compact clusters, which are cubes, then we easily get 
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the singularity. This was essentially the kind of approximation made by 
Fisher, (5) who could conjecture from this basis the existence of a singularity 
for the free energy at the boundary of a phase transition region. 

In the noninteracting case, however (i.e., for the usual percolation model), 
or at high temperature, if we approximate the cluster generating function by 
restricting the summation to the most compact clusters, we do not recover 
our result. Indeed, the most compact clusters, the cubes, appear in the non- 
interacting case with probability pZVqeZ, where ~l = (l + 2) v - l v - 2 v P - L  
Therefore 

f(a)(h) = ~ qeZ(pe-~)'v 
I=2V 

has a singularity at h = log p, but is analytic for h /> log p and in particular 
at h = 0. In fact, a reasonable approximation should take into account an 
average over clusters with given external boundary, as suggested by the central 
limit theorem in the concluding remark of this paper. 

5. F U R T H E R  RESULTS FOR LARGE C O N C E N T R A T I O N S  

We want now to prove here some other results (see Theorem 5) which 
can be obtained for the noninteracting percolation problem when the con- 
centration is large and which yield, together with Section 4, a detailed 
knowledge of the behavior of the various functions involved. Here again we 
will restrict our attention to the site problem on 2 v, but adaptations to bond 
problem and to other lattices are readily obtained according to the methods 
indicated in Section 4. 

First, we will show that for large concentrations, the moments are finite 
andfp(h) is infinitely differentiable. Let us consider Eq. (29). On the right-hand 
side, we can certainly bound xc(Ay) and g~' by 1, which yields the following 
estimate: 

<ICt ~) <~ ~plA'lqI~'I[V(7)lZ (57) 

Now if [~,[ denotes the length of a contour, that is, the number of bonds 
joining one point in V(y) to one point of Z'\  V(y), we see that 

IzX ,l/> l r l / (z-  1), /> I l/(z- 1) 

On the other hand, a Peierls estimate tells us that the number of contours of 
length k is smaller than B k, where B is some constant. So (57) leads to the 
bound 

<lOll> .< Bk(pq)~/(z- 1)(kV/<~- 1))~ (58) 
k 



98 Herv6 Kunz and Bernard Souillard 

The right-hand side of (58) is convergent for p larger than some p(v) and 
implies through tedious but quite direct computations that 

l ! (59) 

The bound (59) implies that for p > p(v), the function fp(h) is infinitely 
differentiable at h = 0, and, together with the results of Section 4, that 

The singularity at h = 0 is then an essential one, at least for large con- 
centrations. As a matter of fact, one should expect fp(h) to be infinitely 
differentiable for any p larger than Pc. In this respect we note that such a 
result is implied by Russo's work (m) in the two-dimensional case. 

Let us study now the Pn. We want to prove that for large concentrations 
they behave as exp(-~n(V-1)/v). Let us first get the upper bound. Using 
arguments of the type used in Section 4, we see that the Pn can be expressed as 

71 N k x ~ O C O  y) 
A T<~n; V ( y )  >~ n 

where the sum runs over all shapes of contours such that Ay is less than or 
equal to n and the number of points inside 7 is greater than or equal to n, and 
where x{~x~o(~)x~ ~ = n - I AT[} is the characteristic function of the event, 
" there  are exactly n - ]ATI occupied points in 0(7 ) connected to AT." 

Hence, by majorizing again the X by 1, we get 

P,~/n <~ E pl~TJql~l (62) 
Yl  

V ( 7 )  >>- n 

Using again a Peierls estimate, together with the remark that for a 
contour of length k, we have V(7) ~< k v/(v- 1), we obtain 

P,ffn <~ E K~Pk/~ (63) 
k > n (  v - 1)Iv 

which in turn implies that for p > p(v), the P.  satisfy 

e,~/n <~ exp[-a(p)n (v-1)/v] (64) 

We would like now to prove a lower bound on the P . .  In fact, this will 
be more complicated than the upper one. Let us first introduce the mean 
number Q. of clusters of size larger than or equal to n: 

Q,~ = ~ Pm/m (65) 
m ~ > n  
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Inequality (64) shows that for large concentrations, 

Q. ~< exp[ -  cz(p)n (~- 1)/v] (66) 

and we will, as a first step, prove a lower bound of the same type for the Q.. 

I .emma.  F o r p  > p(v), the Q. satisfy a lower bound: 

Q. >i exp [ -  b(p)n (~- 1~I~] 

for some constant b(p). 

The Q. can be expressed from (61) as 

z'l \ k x ~ |  (F) 
V(~)/> n 

where the characteristic function inside the brackets runs on the event, " there 
are at least n - [Ay] occupied points in O(y) connected to Ay." 

We restrict now the summation to contours y' such that Ay is a connected 
set; hence Xc(Ay) - 1, and, moreover, we have 

~ X f x ~ o ( , X ~ ' > n - i A y [ ) ) c ~  >~X(x~o(~ Xx~ > n -  ]Ay,} 5 (68) 

since the probability of finding at least n - lay[ points of @(y) connected to 
infinity is certainly less than the probability of finding at least n - lay[ points 
of @(y) connected to Ay. Here Xx ~ denotes the characteristic function of the 
event, " x  is connected to infinity." Furthermore, we can then drop the 
subscript O(y) for the average value. 

At this state, we introduce the variables &:  

S~ = ~ (Xx ~ -  P=) (69) 
x e |  

and we restrict the summation in (67) to the cubes of volume l ~ 

Q. >/ ~ {exp[-~'(p)l~-Z]} 
l >~ n l l v  

• Prob{Sy /> n - [l ~ - (l - 2) ~] - Po~(l - 2) ~} (70) 

Now let us choose l such that 

(n/Po~) z/~ <~ l - 2 <~ (niPs) z/v + 1 (71) 

and so l > n ~/~ since P~ ~< 1. Furthermore, in view of (71), we have 

n - P o o ( l -  2) ~ -  [ H -  ( l -  2) v] ~ < - [ H -  ( l -  2) ~] ~ < - 2 v ( l -  2) ~-~ (72) 
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On the other hand, Prob{Sr > m} is a decreasing function of m, by 
definition, and then 

Prob{S~ i> n -  [ P -  ( l -  2) ~ ] - P ~ ( l -  2) v} 

>/ Prob{S r >/ - 2 , , ( l  - 2) ~- ~} = 1 - Prob{S, < - 2 v ( l -  2) v-~} (73) 

Since the variable & is centered, we can apply the Bienaym6-Tschebycheff 
inequality, which states that 

Prob([X I > a) <<. <(X/a)=) (74) 

Hence 

Prob{S r < - 2v(l - 2) v- ~} 

~< Prob{[S,] > 2v(l - 2) v-z} ~< [2v(l-  2)v-q-=(S,  2) 

Note that, moreover, 

x~Ot 

and we have, by the Harris ~4~ or FKG ~9~ inequality, that 

Then from (76) we get 

with x defined by 

(75) 

(76) 

x = ~ <x0=x,=>- <xo~><x~=> (78) 

The inequalities (70), (73), and (75) imply that 

[ (l - 2) ~-21 ] (79) O= > {exp[-~n(V-z~/~]} 1 (2x)2 

This in turn ensures the desired lower bound on Q,, if the quantity 
inside the second pair of square brackets is positive. This is the case when 

> 3 if n is large enough and when v > 2 for any n if X is small enough. As 
a matter of fact, we will show now that X is finite and X is arbitrarily small 
when p is large. This will end the proof of the lemma and will allow us to 
derive a lower bound for the P, .  

So we consider the quantity X. As a matter of fact, we will prove that 

Xo,u ~ (Xo~X~ '~) - (Xo~~ <~ K(q)[qK(v)]  a(~ (80) 

with K ( q )  small when q = 1 - p is small, which will yield the desired result, 
together with the previous remark that x0.y /> 0. 

<s?> ~ ( / -  2)~x (77) 
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If Xx r denotes the characteristic function of the event, " x  belongs to a 
finite cluster," then 

x x  ~ = 1 - x l  (81) 
So using (81) in the definition of Xo,~ leads to 

Xo,. = (XolXJ> - <Xor><xJ> (82) 
In terms of clusters, (82) can be rewritten as 

Xo,~ = ~ P(C) + ~. P(C1 and 6"2) - ~ P(C1)P(C2) (83) 
Ce 0 and  y C190;  C29y C 130 ; C 2 9 y  

C 1 n C 2 = 

Finally, we may use that if ~C1 n ~C2 = ~ ,  then P(C1 and C2) = P(CI)P(C2), 
and so 

Xo,y = ~ P(C) + ~ [P(C~ and C2) - P(C~)P(C2)] 
C90 a n d  y C1~0"~C29Y 

C l  n C  2 = ~ ;@Cl n O C 2 r 

- ~ P(C~)P(C2) (84) 
0190;C29Y 

C l  n C  2 r ;~ 

Each of these four terms will satisfy a bound of the form (80). As an 
example, in the first one, which is the probability that 0 and y belong to the 
same finite cluster, there exists necessarily a closed contour ~ ,  encircling both 
0 and y, and such that ~2;r is empty. This implies, through arguments already 
used for the upper bound on the P , ,  the desired decay property. The other 
terms are bounded in a similar way. For the next two, either one of the C: and 
Ce encircles the other, and the proof  is the same, or C~ and C2 are external to 
each other with at least a common point in their boundary and one considers 
the two closed contours passing through this point and encircling one the 
origin, the other the point y. The last term, for which the clusters themselves 
intersect, is bounded also in the same way. 

This concludes the proof of the bound (80), which in turn implies the 
lemma on the lower bound for the Q,.  

We are now going to use this result to obtain a lower bound for the P , .  
At this step, we know that the Q~ satisfy, for p larger than some p(v), 

exp[-fi(p)n (~-1)1~] < Q,, = ~ P,Jm <<. exp[-/3'(p)n (~-1)/~] (85) 
rn~>n 

If A is some given integer, let us consider 

Q . -  Qa',, = ~ em/m (86) 
n <~m < AVn 

From (85), it follows that 

a .  - Qa~ >/exp[-/3(p)n (~-1)I~] - exp[-[3'(p)A~-ln(~-l)lq (87) 
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We fix now A, for p given, such that ~' (p)A v- 1 > 2/3(p), and then (87) yields 
the existence of ~"(p) such that 

Q,~ - QAVn >i e x p [ - B " ( p ) n  (~-1~/~] (88) 

Now from (88) and (86) we see that for any n there exists some k(n) such that 

n <~ k(n)  < A~n (89) 

P~,~ 1 1 exp[-  fl"(p)n (v- l~/v] (90) 
k(n) >~ A ~ - 1 n 

If we consider now the intervals 

11 = [1, AV[, 15 = [A v, A ~ [ , . . . ,  I, = [A '~, A"+I'v[ . . . .  

we will denote, for each l, by k( l )  one of the integers of the interval/z for 
which (90) holds. 

We have then obtained a sequence k( l )  which has the desired lower 
bound. We will prove now that the properties of this sequence, together with 
the upper-additivity of l og (PJn )  (see the lemma in Section 4) implies a good 
lower bound on the P, .  

We will use that for any n, there exist integers a(n, l), lo(n), and no(n) 
satisfying the four following properties: 

n = ~ a(n, l )k ( l )  + no(n) (91) 
l <~ l o 

A(~o +l~v ~< n < A% +2~ (92) 

0 <. a(n, l) < A 2~ (93) 

0 <~ no(n) < A ~ (94) 

The decomposition (9 I)-(94) generalizes the decomposition of an integer 
onto a nondecimal basis. This is necessary because the k( l )  are not necessarily 
of the form r z, but only belong to the sequence of intervals lz. This decom- 
position can be proved by induction as follows. A given n belongs to some 
interval I~o + 1~ defining hence lo(n), satisfying (92). Then one defines a(n, lo) 
such that 

a(n, lo)k(lo) <~ n < [a(n, lo) + 1]k(lo) (95) 

From (95) it follows that 

a(n, 1o) <~ n/k(lo) <~ AC~o+2>~/AZo~ = A 2~ 

and a(n, lo) then satisfies (93); moreover, (95) implies that n - a(n, lo) x 
k(lo) < k(lo), and so n - a(n, lo) x k(lo) can be decomposed in turn by 
induction into the k( l )  for l < 10, defining successively a(n, l o -  1), 
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a(n, lo - 2) ..... all satisfying (93). At the end the remainder is called no(n) and 
satisfies (94). 

Now in view of (91) and of the property P~+m/(n + m) >1 (PJn)(Pm/m) 
(see the lemma in Section 4), we get 

>1 E " Pa(~.z) az) �9 Pno<:> log Z<~o log a(n, l )k(l)  + log ~ (96) 

which in turn yields 

P~ , P~.> P~o(~) 
log n >~ ~ a(n, l) 1og k ~  + log no(n) (97) 

l<<.l o 

and finally, if ~ denotes (v - 1)/v, we get 

1 ,  Pn k(l)  ~ 1 , Pk(z )  no(n)" 1 . P,~o(~) 
log ~ >/ E a(n, l) n~- k(l)--" log ~ )  + n---- ~ no(n~ log ~ (98) 

l ~ I o 

But, on the one hand, no(n) is always bounded by A v from property (94), 
and then 

1 , eno(n) 
no(--n) ~ log ~ > - -K 

for some constant K. On the other hand, the sequence k(l)  satisfies by con- 
struction the property (90), and so, for any n and/ ,  

1 , Paz) - K'  
k ( l y  log k ~  > 

for some constant K'. 
Hence, in view of (98), we get 

1 ,  P,~ K '  k(l)~ (99) ~-~ log --~ ) - K - E a(n, l) n~ , 
l<~lo(n) 

In view of (93), (92), and of the fact that k(l)  belongs to the interval It, this 
provides 

1 P. K' A2~ 
n~log- -  /> - K -  A%+i)<v-1) E A<l+a>(~-l) (100) 

/'/ /~<lo(n ) 

and we see that the right-hand side of (I00) is bounded below for any 10 by 
some constant - K "  depending only on A, that is, on p. Hence we have 
proved that for p > P(O and for any n 

1 P" K" (101) 
n(V - ~)/v log - -n  ~> - 

which yields the desired result for the lower bound on the P , .  
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Before regrouping these results in a theorem, we wish to show how the 
bound (64) implies a regularity property off,(h) at h = 0, namely the Borel- 
summability, and that f,(h) possesses then an integral representation. This 
result has been obtained in collaboration with G. Parisi. 

Let us first introduce the following function G(t), which will be proved 
to be the Borel transform offp(h): 

a(t) = _~1 ~ cos[(tn)l/2] P_~ (102) 

By virtue of Icos[(tn)l/2]l < exp(~/n Jim ~/71), and from (64), the series 
(102) will be absolutely convergent in the whole complex plane and then 
entire in the case v >/ 3, and absolutely convergent and analytic in the case 
v = 2 in the following parabola, which includes the whole positive real axis: 

(Ira t) 2 < 4a(p)2(Re t) + 4a(p) ~ 

Now we will prove that 

f,(h) = fo~ G(th)e-~ -~7 (103) 

In fact, if we insert the expression (102) into (I03), the double summation is 
absolutely convergent for t t> 0 and we can permute them. Hence 

fo ~~ 6(th)e_ ~ dt = ~ ~ ~ (~ cos[(tnh)I/2 ] e-'  a t  (104) 
V7 ~/-g ~. n 2o ~/7 

But the integral on the right-hand side of (104) can be computed explicitly, 
and the result is x/~ e-h,, which concludes the proof. 

We can now regroup all these results: 

T h e o r e m  5. For the bond and site percolation problems over 7] v or 
over the other realistic lattices, v > 1, besides the results of Theorem 3, the 
following properties hold for p larger than some p0(v): 

(i) f,(h) is infinitely differentiable at h = 0, and, moreover, is Borel- 
summable. The integral representation (103) holds, with G(t) satis- 
fying the described properties. 

(ii) The moments of the cluster size distribution behave as 

K~'[---L-- ~ t)' KI'(~_--~" 1l),~< ~1C1'5< ,~-1  " 
(iii) The cluster distribution function satisfies for all n 

exp[-  a(p)n ~- 1~/,] <~ P~/n <~ exp[-  r <~- 1)/,] 
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Finally, we think that the techniques developed in Sections 4 and 5 
should allow one to prove results analogous to Theorem 5 in the case of the 
interacting percolation problem. We will not develop here our work in that 
direction. In the next section we explain some of the phenomena proved in 
this paper, within the framework of a central limit theorem. 

6. C O N C L U S I O N :  P E R C O L A T I O N  A N D  THE 
C E N T R A L  L I M I T  T H E O R E M  

We discuss the previous results from a qualitative point of view. We have 
seen in this paper that all the results concerningf(h), (]C[~), and P~ crucially 
depend on the behavior of the average volume of the clusters for a given 
external boundary. 

So let us consider for a given external boundary 7 the variable S~ = 
~xeO(y) n~, x=, which gives the number of occupied points inside @(7) connected 
to A 7. Now, (S~) is precisely the average number of points of the interior of 
the clusters with external boundary 7. 

Now in various situations, for example, forp # Po, in the noninteracting 
case, one expects that a central limit theorem should hold. This means that 
the distribution of the variable 

[o(7)] - '~  ~ (x~ ~ -  (x~')) (105) 
xeO(y) 

should tend to that of a Gaussian centered at the origin when 7 tends to 
infinity. 

Since (nx ~ )  --> P~, this implies that 

Prob( ~oc, X~ r =  m) ~ 1 ( [m - @(7)P~]2~ (106) 
x [2~r| exp - 2| ] 

which is a "8-function" in the limit of large 7. 
Hence, if we consider as an example the cluster distribution function P. ,  

we have in view of (61) 

P~/n ~ E pIA,fqlO~l 8.,A,+o(,)v= (107) 
71 

and so the external contours 7 contributing to the P~ satisfy 

A T ~  8 7 ~ n  if Poo = 0  (108) 

A), ~ ~7 "~ (niP,o) (~-1)/~ if P~ # 0 (109) 

Equations (108) and (109) explain, in view of (107), the qualitatively different 
behavior of the P~ outside and inside the percolative region. 

In fact, we expect that the methods of this paper, in particular some of 
those in Section 5, should allow one to get a central limit theorem at least for 
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low and high concentra t ions .  I t  would cer ta inly  be of  interest  to have a 
genera l  discussion of  this point .  

Final ly ,  these remarks  show tha t  a good  es t imate  for  the  perco la t ion  
quant i t ies  should take  into account  not  only special clusters (compact, . . . ) ,  bu t  
an average value over  the clusters with same external  boundary ,  such as the 
one descr ibed by (107)-(109). 
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